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1. Introduction 

In this reading, we look at two important concepts to examine the relationship between two or 

more financial variables: correlation analysis and regression analysis. For example, how to 

determine if there is a relationship between the returns of the U.S. stock market and the Japanese 

stock market over the past five years, or between unemployment and inflation? 

 

2. Correlation Analysis 

In this section, we look at two methods to examine how two sets of data are related to each other: 

scatter plots and correlation analysis. 

2.1. Scatter Plots 

A scatter plot is a graph that shows the relationship between the observations for two data series 

in two dimensions (x-axis and y-axis). The scatter plot below is reproduced from the curriculum:  

 

 

 

Figure 1. 

Scatter Plot of 

Annual Money 

Supply Growth Rate 

and Inflation Rate by 

Country, 1970–2001 
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Interpretation of Figure 1: 

 The two data series here are the average growth in money supply (on the x-axis) plotted 

against the average annual inflation rate (on the y-axis) for six countries. 

 Each point on the graph represents (money growth, inflation rate) pair for one country. 

From the six points, it is evident that there is an increase in inflation as money supply 

grows.  

2.2. Correlation Analysis 

Correlation analysis is used to measure the strength of the relationship between two variables. It 

is represented as a number. The correlation coefficient is a measure of how closely related two 

data series are. In particular, the correlation coefficient measures the direction and extent of 

linear association between two variables.  

 

 

The three scatter plots below show a positive linear, negative linear, and no linear relation 

between two variables A and B. They have correlation coefficients of +1, -1 and 0 respectively.  

Characteristics of the correlation coefficient 

A correlation coefficient has no units. The sample correlation coefficient is denoted by r.  

The value of r is always -1 ≤ r ≤ 1. 

A value of r greater than 0 indicates a positive linear association between the two variables. 

A value of r less than 0 indicates a negative linear association between the two variables. 

A value of r equal to 0 indicates no linear relation between the two variables. 
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Figure 3. 

Variables with a  

Correlation of -1. 

 

 

 

Figure 4: 

Variables with a  

Correlation of 0. 

 

 

2.3. Calculating and Interpreting the Correlation Coefficient 

In order to calculate the correlation coefficient between two variables, X and Y, we need the 

Figure 2.  

Variables with a  

Correlation of 1. 
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following: 

1. Covariance between X and Y, denoted by Cov (X,Y) 

2. Standard deviation of X, denoted by sx 

3. Standard deviation of Y, denoted by sy 

This is the formula for computing the sample covariance of X and Y: 

Cov (X, Y) = 
∑ (      ̅)(      ̅)
 
     

     
 

The table below illustrates how to apply the covariance formula.  Our data is the money supply 

growth rate (Xi) and the inflation rate (Yi) for six different countries.  ̅ represents the average 

money supply growth rate and  ̅ represents the average inflation rate.  

Country Xi Yi Cross-Product 
Squared 

Deviations 

Squared 

Deviations 

Australia 0.1166 0.0676 0.000169 0.000534 0.000053 

Canada 0.0915 0.0519 0.000017 0.000004 0.000071 

New Zealand 0.106 0.0815 0.000265 0.000156 0.000449 

Switzerland 0.0575 0.0339 0.00095 0.001296 0.000697 

United Kingdom 0.1258 0.0758 0.000501 0.001043 0.00024 

United States 0.0634 0.0509 0.000283 0.000906 0.000088 

Sum 0.5608 0.3616 0.002185 0.003939 0.001598 

Average 0.0935 0.0603       

Covariance     0.000437     

Variance       0.000788 0.00032 

Standard deviation       0.028071 0.017889 

 

Notes:  

1. Divide the cross-product sum by n − 1 (with n = 6) to obtain the covariance of X and Y.  

2. Divide the squared deviations sums by n − 1 (with n = 6) to obtain the variances of X and Y.  

Source: International Monetary Fund. 

 

Given the covariance between X and Y and the two standard deviations, the sample correlation 

can be easily calculated.  

The following equation shows the formula for computing the sample correlation of X and Y: 
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    (   )

     
 

r = 
    (   )

       
 = 

        

                   
 = 0.870236 

LO.a: Calculate and interpret a sample covariance and a sample correlation coefficient; and 

interpret a scatter plot. 

2.4. Limitations of Correlation Analysis 

The correlation analysis has certain limitations: 

 Two variables can have a strong non-linear relation and still have a very low correlation.  

Recall that correlation is a measure of the linear relationship between two variables. 

 The correlation can be unreliable when outliers are present. 

 The correlation may be spurious. Spurious correlation refers to the following situations: 

o The correlation between two variables that reflects chance relationships in a 

particular data set. 

o The correlation induced by a calculation that mixes each of two variables with a 

third variable. 

o The correlation between two variables arising not from a direct relation between 

them, but from their relation to a third variable. Ex: shoe size and vocabulary of 

school children. The third variable is age here. Older shoe sizes simply imply that 

they belong to older children who have a better vocabulary. 

LO.b: Describe the limitations to correlation analysis. 

 

2.5. Uses of Correlation Analysis 

The uses of correlation analysis are highlighted through six examples in the curriculum. Instead 

of reproducing the examples, the specific scenarios where they are used are listed below: 

 Evaluating economic forecasts: Inflation is often predicted using the change in the 

consumer price index (CPI). By plotting actual vs predicted inflation, analysts can 
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determine the accuracy of their inflation forecasts. 

 Style analysis correlation: Correlation analysis is used in determining the appropriate 

benchmark to evaluate a portfolio manager’s performance. For example, assume the 

portfolio managed consists of 200 small value stocks. The Russell 2000 Value Index and 

the Russell 2000 Growth Index are commonly used as benchmarks to measure the small-

cap value and small-cap growth equity segments, respectively. If there is a high 

correlation between the returns to the two indexes, then it may be difficult to distinguish 

between small-cap growth and small-cap value as different styles.  

 Exchange rate correlations: Correlation analysis is also used to understand the 

correlations among many asset returns. This helps in asset allocation, hedging strategy 

and diversification of the portfolio to reduce risk. Historical correlations are used to set 

expectations of future correlation. For example, suppose an investor who has an exposure 

to foreign currencies. He needs to ascertain whether to increase his exposure to the 

Canadian dollar or to Japanese Yen. By analyzing the historical correlations between 

USD returns to holding the Canadian dollar and USD returns to holding the Japanese yen, 

he will be able to come to a conclusion. If they are not correlated, then holding both the 

assets helps in reducing risk. 

 Correlations among stock return series: Analyzing the correlations among the stock 

market indexes such as large-cap, small-cap and mid-cap helps in asset allocation and 

diversifying risk. For instance, if there is a high correlation between the returns to the 

large-cap index and the small-cap index, then their combined allocation may be reduced 

to diversify risk. 

 Correlations of debt and equity returns: Similarly, the correlation among different 

asset classes, such as equity and debt, is used in portfolio diversification and asset 

allocation. For example, high-yield corporate bonds may have a high correlation to equity 

returns, whereas long-term government bonds may have a low correlation to equity 

returns.  

 Correlations among net income, cash flow from operations, and free cash flow to the 

firm: Correlation analysis shows if an analyst’s decision to value a firm based only on NI 

and ignore CFO and FCFF is correct. FCFF is the cash flow available to debt holders and 
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shareholders after all operating expenses have been paid and investments in working and 

fixed capital have been made. If there is a low correlation between NI and FCFF, then the 

analyst’s decision to use NI instead of FCFF/CFO to value a company is questionable. 

2.6. Testing the Significance of the Correlation Coefficient 

The objective of a significance test is to assess whether there is really a correlation between 

random variables, or if it is a coincidence. If it can be ascertained that the relationship is not a 

result of chance, then one variable can be used to predict another variable using the correlation 

coefficient. 

A t-test is used to determine whether the correlation between two variables is significant. The 

population correlation coefficient is denoted by ρ (rho). As long as the two variables are 

distributed normally, we can use hypothesis testing to determine whether the null hypothesis 

should be rejected using the sample correlation, r. The formula for the t-test is: 

t = 
  √     

√      
 

The test statistic has a t-distribution with n - 2 degrees of freedom. 

n denotes the number of observations. 

How to use the t-test to determine significance: 

1. Write the null hypothesis H0 i.e. (ρ = 0), and the alternative hypothesis Ha i.e. (ρ ≠ 0). 

Since the alternative hypothesis is to test the correlation is not equal to zero, it is a two-

tailed test.  

2. Specify the level of significance. Determine the degrees of freedom.  

3. Determine the critical value, tc for the given significance level and degrees of freedom. 

4. Calculate the test statistic, t = 
  √     

√      
 

5. Make a decision to reject the null hypothesis H0, or fail to reject H0. If absolute value of t 

> tc, then reject H0. If absolute value of t ≤ tc, then fail to reject H0. 

6. Interpret the decision: 

a. If you reject H0, then there is a significant linear correlation. 
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b. If you fail to reject H0, then it can be concluded that there is statistically no 

significant linear correlation. 

Important points from Examples 7 through 10 in the curriculum are summarized below: 

Example 7: Testing the correlation between money supply growth rate and inflation 

Data given:  The sample correlation between long-term supply growth and long-term inflation in 

six countries during the 1970 - 2001 period is 0.8702. The sample has six observations. 

Test the null hypothesis that the true correlation in the population is zero (ρ = 0). 

Solution: 

Compute the test statistic: t = 
         √     

√           
 = 3.532 

Critical value: tc = 2.776 at 0.05 significance level with n - 2 = 6 - 2 = 4 degrees of freedom 

Decision rule: If the test statistic is greater than 2.776 or less than - 2.776, then we can reject the 

null hypothesis.  

Conclusion: Since the test statistic 3.532 is greater than 2.776, we can conclude that there is a 

strong relationship between long-term money supply growth and long-term inflation in six 

countries. 

Example 8: Testing the Krona - Yen Return Correlation 

Data given: Sample correlation between the USD monthly returns to Swedish kronor and the 

Japanese yen for the period from January 1990 to December 1999 is 0.2860.  

Test the null hypothesis that the true correlation in the population is zero (ρ = 0). 

Solution: 

 

Number of observations = 120 months (Jan. 1990 – Dec. 1999) 

Test statistic t = 
         √       

√         
 
 = 3.242 
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Critical value tc = 1.98 (significance level = 0.05, degrees of freedom = 118) 

Decision rule: If the test statistic is greater than 1.98 or less than - 1.98, then we can reject the 

null hypothesis.  

Conclusion: Since the test statistic 3.242 is greater than 1.98, we can reject the null hypothesis 

and conclude that there is a correlation between the USD monthly return to Swedish kronor and 

the Japanese yen. The correlation coefficient is smaller at 0.2860 but is still significant because 

the sample is larger. As n increases, the critical value decreases and t increases. 

Example 10: Testing the correlation between net income and free cash flow to the firm 

Data given: The sample correlation between NI and FCF for six women’s clothing stores was 

0.4045 in 2001. The sample has six observations. Test the null hypothesis that the true 

correlation in the population is 0 against the alternative hypothesis that the correlation in the 

population is different from 0.  

Solution: 

The test statistic t = 
         √     

√          
 
 = 0.8846 

Critical test statistic = 2.776 (at 0.05 significance level with 4 degrees of freedom) 

Decision rule: If the test statistic is greater than 2.776 or less than -2.776, then reject the null 

hypothesis. 

Conclusion: Since t = 0.8846 is less than 2.776, we cannot reject the null hypothesis. For this 

sample of women’s clothing stores, there is no statistically significant correlation between NI 

and FCFF.  

Some inferences based on the above examples: 

 As n increases, the absolute value of the critical value tc decreases. 

 As n increases, the absolute value of the numerator increases resulting in large t-value. 

 Large absolute values of the correlation coefficient indicate strong linear relationships. 
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 Relatively small correlation coefficients can be statistically significant (Example 8). 

LO.c: Formulate a test of the hypothesis that the population correlation coefficient equals zero, 

and determine whether the hypothesis is rejected at a level of significance. 

 

3. Linear Regression 

3.1. Linear Regression with One Independent Variable 

Linear regression allows us to use one variable to make predictions about another, test 

hypotheses about the relation between two variables, and quantify the strength of the relationship 

between the two variables. Linear regression assumes a linear relationship between the 

dependent and independent variables. 

In simple terms, regression analysis uses the historical relationship between the independent 

variable and the dependent variable to predict the values of the dependent variable. The 

regression equation is expressed as follows: 

              

where 

i = 1,….n 

Y = dependent variable 

b0 = intercept 

b1 = slope coefficient 

X = independent variable 

ε = error term  

b0 and b1 are called the regression coefficients. 

Dependent variable is the variable being predicted. It is denoted by Y in the equation. The 
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variable used to explain changes in the dependent variable is the independent variable. It is 

denoted by X. The equation shows how much Y changes when X changes by one unit. 

Regression analysis uses two types of data: cross-sectional and time-series.  

A linear regression model or linear least squares method, computes the best-fit line through 

the scatter plot, or the line with the smallest distance between itself and each point on the scatter 

plot. The regression line may pass through some points, but not through all of them. The vertical 

distances between the observations and the regression line are called error terms, denoted by εi. 

Linear regression chooses the estimated values for intercept   ̂ and slope   ̂ such that the sum of 

the squared vertical distances between the observations and the regression line is minimized. 

This is represented by the following equation. The error terms are squared, so that they don’t 

cancel out each other. The objective of the model is that the sum of the squared error terms 

should be minimized.  

∑ (      ̂     ̂  )
 

 

   

 

Where    ̂and    ̂ are estimated parameters. 

Note: The predictions in a regression model are based on the population parameter values of   ̂ 

and   ̂ and not on b0 or b1.  Figure 5 below shows the regression line.  

Interpretation of the graph: 
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 The graph plots money growth rate, the independent variable, on the x-axis against 

inflation rate, the dependent variable, on the y-axis.  

 The equation estimates the value of the long-term inflation rate as b0 + b1 (long-term rate 

of money growth) + ε.  

 The error term or regression residual is the distance between the line and each of the six 

points. This is also equal to the difference between the actual value of the dependent 

variable and the predicted value of the dependent variable. 

LO.d: Distinguish between the dependent and independent variables in a linear regression. 

3.2. Assumptions of the Linear Regression Model 

The classic linear regression model (              where i = 1,…,n) is based on the 

following six assumptions: 

1. The relationship between Y and X is linear in the parameters b0 and b1. This means that 

b0, b1, and X can only be raised to the power of 1. b0 and b1 cannot be multiplied or 

divided by another regression parameter. This assumption is critical for a valid linear 

regression.  

2. X is not random. 

3. The expected value of the error term is zero. This ensures the model produces correct 

estimates for b0 and b1. 

4. The variance of the error term is constant for all observations. This is called 

homoskedasticity. If the variance of the error term is not constant, then it is called 

heteroskedasticity. 

5. The error term, ε, is uncorrelated across observations. 

6. The error term, ε, is normally distributed. 

Example 11: A summary of how economic forecasts are evaluated 

This example discusses the importance of making accurate and unbiased forecasts. It is based on 

the following premise: if forecasts are accurate, every prediction of change in an economic 

variable will be equal to the actual change. For an unbiased forecast, the expected value of the 

error term is zero and E (actual change – predicted change) = 0 
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Figure 6 below shows a scatter plot of the mean forecast of current-quarter percentage change in 

the CPI from the previous quarter and the actual percentage change in the CPI. It shows the fitted 

regression line for the following equation: 

Actual percentage change = b0 + b1 (predicted percentage change) + ε 

To prove that the forecasts are unbiased, the following must be true: 

 Intercept b0 = 0; slope b1 = 1. If the values are different from 0 and 1, then the error term 

will have an expected value different from zero. 

 E[actual change – predicted change] = 0 

 The  expected value of the error term given by E[actual change – b0 – b1 (predicted 

change)] = 0 

 

 

Figure 6. 

 

 

 

 

 

 

 

What we get: 

The fitted regression line is drawn based on the equation: 
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Actual change = - 0.0140 + 0.9637 (predicted change) 

Since b0 and b1 are close to 0 and 1 respectively, we can conclude that the forecast is unbiased.  

LO.e: Describe the assumptions underlying linear regression, and interpret regression 

coefficients. 

3.3. The Standard Error of Estimate 

Figure 7 below shows a fitted regression line to the scatter plot on monthly returns to the S&P 

500 Index and the monthly inflation rate in the United States during the 1990s. The monthly 

inflation rate is the independent variable. The stock returns is the dependent variable as stock 

returns vary with the inflation rate.  

 

 

Figure 7: 

 

In contrast to the fitted regression line in Figure 6, many actual observations in Figure 7 are 

farther from the regression line. This may imply the predictions were not strong, resulting in an 

inaccurate forecast. The standard error of estimate (SEE) measures how well a given linear 

regression model captures the relationship between the dependent and independent variables. In 

simple terms, it is the standard deviation of the prediction errors. 



   R09 Correlation and Regression IFT Notes 

 

Copyright © IFT. All rights reserved www.ift.world Page 16 

 

The formula for the standard error of estimate is given below: 

    (∑
(         ̂     ̂  )

 

     

 
   )

 

 

= (
∑ (  )̂

  
    

   
)

 

 
 

where 

Numerator: Regression residual,    = dependent variable’s actual value for each observation – 

predicted value for each observation 

Denominator: degrees of freedom = n – 2 = n observations – two estimated parameters    ̂and   ̂. 

The reason 2 is subtracted is because SEE describes characteristics of two variables. 

A low SEE implies an accurate forecast. 

Example 12: 

This example illustrates how to compute the standard error of estimate based on money supply 

and inflation data, and regression equation:                    

Table 7. Computing the Standard Error of Estimate  

 

Country 
Money Supply 

Growth Rate Xi 

Inflation 

rate Yi 

 

Predicted 

Inflation 

Rate 

Regression 

Residual 

Squared 

Residual 

Australia 0.1166 0.0676 0.0731 – 0.0055 0.00003 

Canada 0.0915 0.0519 0.0591 – 0.0072 0.000052 

New Zealand 0.106 0.0815 0.0672 0.0143 0.000204 

Switzerland 0.0575 0.0339 0.0403 – 0.0064 0.000041 

United Kingdom 0.1258 0.0758 0.0782 – 0.0024 0.000006 

United States 0.0634 0.0509 0.0436 0.0073 0.000053 

Sum         0.000386 

Source: International Monetary Fund.  

Data given: 

Column 2, 3: Values are given for money supply growth rate (the independent variable) and an 
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inflation rate (the dependent variable). 

Calculated values: Let us see how to calculate the values for each column: 

Column 4: Predicted value calculated for each observation from the regression equation 

Column 5: Residual = actual value – predicted value =    (  ̂     ̂  ) 

Column 6: Squared residual and finally, the sum of squared residuals, is calculated as 0.000386 

Using Equation 5, SEE is calculated as (
        

   
)

 

 
= 0.009823. SEE is about 0.98 percent. 

Note: From an exam point of view, the testability of a question like this is low that asks you to 

calculate SEE given x and y data.  

3.4. The Coefficient of Determination 

The SEE gives some indication of how certain we can be about a particular prediction of Y using 

the regression equation; it still does not tell us how well the independent variable explains 

variation in the dependent variable. The coefficient of determination does exactly this: it 

measures the fraction of the total variation in the dependent variable that is explained by the 

independent variable. It is denoted by R
2
. 

There are two methods to calculate the coefficient of determination: 

Method 1: Square the correlation coefficient between the dependent and the independent 

variable. The drawback of this method is that it cannot be used when there is more than one 

independent variable. 

Method 2: The percent of variation that can be explained by the regression equation.  

Total variation = unexplained variation + explained variation 
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where 

Total variation = ∑  (     ̅)
   

    = actual value of yi and the average value of yi. If there was no 

regression equation, then the predicted value of any observation would be mean of yi,   ̅. 

Unexplained variation from the regression = ∑  (     ̂)
    

    

Example 13: Inflation rate and growth in money supply 

 

Unexplained variation in the regression = sum of squared residuals = 0.000386 

The table below from the curriculum shows the computation for total variation in the dependent 

variable. 

Table 8. Computing Total Variation 

 

Country 
Money Supply 

Growth Rate Xi 

Inflation Rate 

Yi 

Deviation from 

Mean  
Squared Deviation  

Australia 0.1166 0.0676 0.0073 0.000053 

Canada 0.0915 0.0519 –0.0084 0.000071 

New Zealand 0.106 0.0815 0.0212 0.000449 

Switzerland 0.0575 0.0339 –0.0264 0.000697 

United Kingdom 0.1258 0.0758 0.0155 0.00024 

United States 0.0634 0.0509 –0.0094 0.000088 

  Average: 0.0603 Sum: 0.001598 

Characteristics of coefficient of determination,     

The higher the R
2
, the more useful the model. 

    has a value between 0 and 1. 

It tells us how much better the prediction is by using the regression equation rather than just  ̅ 

to predict y. 

With only one independent variable,    is the square of the correlation.   

The correlation, r, is also called the “multiple - R”.   
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Source: International Monetary Fund.  

Calculate the coefficient of determination. 

Solution: 

Since there is only one independent variable, both the methods can be used and they should yield 

the same answer. 

Method 1: in section 2.3 we had calculated the correlation coefficient for the same data to be 

0.870236. Squaring it, we get coefficient of determination as 0.7573. 

Method 2: using Equation 5, 

   
                                       

               
 = 
                    

        
 = 0.7584.  

This method is to be used if there is more than one independent variable. 

LO.f: Calculate and interpret the standard error of the estimate, the coefficient of 

determination, and a confidence interval for a regression coefficient. 

3.5. Hypothesis Testing 

A parameter tells us something about a population. A confidence interval is an interval of 

values that we believe includes the true parameter value, b1, with a given degree of confidence. 

Simply put, it is used to estimate a population parameter.  

Hypothesis testing is used to assess whether the evidence supports the claim about a population.  

The three things required to perform a hypothesis test using the confidence interval approach are 

listed below: 

 The estimated parameter value,   ̂ or   ̂ 

 The hypothesized value of the parameter, b0 or b1 

 A confidence interval around the estimated parameter 

There are two ways to perform hypothesis testing using either the confidence interval or testing 
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for a significance level, that we will see in the following example. 

Suppose we regress a stock’s returns on a stock market index’s returns and find that the slope 

coefficient is 1.5 with a standard error estimate of 0.200. Assume we need 60 monthly 

observations in our regression analysis. The hypothesized value of the parameter is 1.0, which is 

the market average slope coefficient. Define the null and alternative hypothesis. Compute the test 

statistic. At a 0.05 level of significance, should we reject H0? 

Solution: 

Method 1: The confidence interval approach 

Step 1: Select the significance level for the test. For instance, if we are testing at a significance 

level of 0.05, then we will construct a 95 percent confidence interval. 

Step 2: Define the null hypothesis. For this example, the probability that the confidence interval 

includes b1 is 95 percent, will be the null hypothesis. H0: b1 = 1.0; Ha: b1 ≠ 1.0 

Step 3: Determine the critical t value tc for a given level of significance and degrees of freedom. 

In this regression with one independent variable, there are two estimated parameters, the 

intercept and the coefficient on the independent variable. 

Number of degrees of freedom = number of observations – number of estimated parameters = 60 

– 2 = 58. 

tc = 2.00 at (significance level of 0.05 ad 58 degrees of freedom) 

Step 4: Construct the confidence interval which will span from  ̂       ̂  to    ̂       ̂ where tc 

is the critical t value. 

Confidence interval = 1.5 – 2(0.2) to 1.5 + 2(0.2) = 1.10 to 1.90 

Step 5: Conclusion: Make a decision to reject or fail to reject the null hypothesis. 

Since the hypothesized value of 1.0 for the slope coefficient falls outside the confidence interval, 

we can reject the null hypothesis. This means we are 95 percent confident that the interval for the 

slope coefficient does not contain 1.0. 
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Method 2: Using the t-test of significance 

Step 1: Construct the null hypothesis. H0: b1 = 1.0 

Step 2: Compute the t-statistic using the formula below: 

t = 
  ̂     

   ̂

 

The t-statistic is for a t-distribution with (n - 2) degrees of freedom because two parameters are 

estimated in the regression. 

  
       

   
     

Step 3: Compare the absolute value of the t-statistic to tc. and make a decision to reject or fail to 

reject the null hypothesis. If the absolute value of t is greater than tc, then reject the null 

hypothesis. Since 2.5 > 2, we can reject the null hypothesis that b1 = 1.0. 

Notice that both the approaches give the same result. 

p-value: At times financial analysts report the p-value or probability value for a particular 

hypothesis. The p-value is the smallest level of significance at which the null hypothesis can be 

rejected. It allows the reader to interpret the results rather than be told that a certain hypothesis 

has been rejected or accepted. In most regression software packages, the p-values printed for 

regression coefficients apply to a test of the null hypothesis that the true parameter is equal to 0 

against the alternative that the parameter is not equal to 0, given the estimated coefficient and the 

standard error for that coefficient. Here are a few important points connecting t-statistic and p-

value: 

 Higher the t-statistic, smaller the p-value. 

 The smaller the p-value, the stronger the evidence to reject the null hypothesis. 

 Given a p-value, if p-value ≤ α, then reject the null hypothesis H0. α is the significance 

level. 

Example 14: Estimating beta for General Motors stock 

Given the table below that shows the results of the regression analysis, test the null hypotheses 
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that β for GM stock equals 1 against the alternative hypotheses that β does not equal 1. 

The regression equation is Y = 0.0036 + 1.1958X + ε 

Regression Statistics       

Multiple R 0.5549 

 

  

R-squared 0.3079 

 

  

Standard error of estimate 0.0985 

 

  

Observations 60 

 

  

  Coefficients Standard Error t-Statistic 

Alpha 0.0036 0.0127 0.284 

Beta 1.1958 0.2354 5.0795 

Source: Ibbotson Associates and Bloomberg L.P.  

Solution: 

We will test the null hypotheses using the confidence interval and t-test approaches. 

Method 1: See if the hypothesized value falls within the confidence interval. We follow the 

same steps as the previous example.  

 The critical value of the test statistic at the 0.05 significance level with 58 degrees of 

freedomistc ≈ 2. 

 Construct the 95 percent confidence interval for the data for any hypothesized value of β: 

  ̂       ̂ = 1.1958 ± 2 (0.2354) = 0.7250 to 1.6666 

 Conclusion: Since the hypothesized value of β = 1 falls in this confidence interval, we 

cannot reject the hypothesis at the 0.05 significance level.  This also means that we 

cannot reject the hypotheses that GM stock has the systematic risk as the market. 

Method 2: Using the t-statistic to test the significance level.  

 Compute the t-statistic for GM using equation 7:   
  ̂   

  ̂
 = 
            

      
 = 0.8318 

 Since t-statistic is less than the critical value of 2, we fail to reject the null hypothesis. 
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Other observations from the data given: 

 A R
2
 of 0.3079 indicates only 31 percent of the total variation in the excess return to GM 

stock can be explained by excess return to the market portfolio. The remaining 69 percent 

comes from non-systematic risk. 

 Smaller standard errors of an estimated parameter, result in tighter confidence intervals.  

Example 15: Explaining the company value based on returns to invested capital 

This example shows a regression hypothesis test with a one-sided alternative. The regression 

equation 
   

   
      (           )     where the subscript i is an index to identify the 

company, tests the relationship between 
  

   
 and          . Our null hypothesis is H0: b1 <= 

0; the significance level is 0.05. Use hypothesis testing to test the relationship between 
  

  
 and 

(ROIC - WACC). The results of the regression are given: 

Regression Statistics   

  
  
  
  
  

Multiple R 0.9469 

R-squared 0.8966 

Standard error of estimate 0.7422 

Observations 9 

  Coefficients Standard Error t-Statistic 

Intercept 1.3478 0.3511 3.8391 

Spread 30.0169 3.8519 7.7928 

Source: Nelson (2003).  

Solution: 

The t-statistic for a coefficient reported by software programs assumes the hypothesized value to 

be 0. If you are testing for a different null hypothesis, as in the previous example, then the t-

statistic must be computed. In this example, however, we are testing for b1 = 0.  Since the t-

statistic of 7.7928 is greater than tc, we can reject the null hypothesis and conclude there is a 

statistically significant relationship between EV/IC and (ROIC - WACC). R
2
 of 0.8966 implies 

ROIC - WACC explains about 90 percent of the variation in EV/IC. 

Example 16: Testing whether inflation forecasts are unbiased 
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In this example, we test the null hypothesis for two parameters: a slope of 0 and a slope 

coefficient of 1. In Example 11, we saw that for an unbiased forecast, the expected value of the 

error term is zero and E (actual change – predicted change) = 0. For the average forecast error to 

be 0, the value of b0 (the intercept) should be 0 and the value of b1 (slope) should be 1 in this 

regression equation:  

Actual percentage change = b0 + b1 (predicted change) +    

The following data is given: 

Regression Statistics       

Multiple R 0.7138     

R-squared 0.5095     

Standard error of estimate 1.0322     

Observations 80     

  Coefficients Standard Error t-Statistic 

Intercept – 0.0140 0.3657 – 0.0384 

Forecast (slope) 0.9637 0.1071 9.0008 

Sources: Federal Reserve Banks of Philadelphia and St. Louis.  

Using hypothesis testing, determine if the forecasts are unbiased. 

Solution: 

1. Define the null hypotheses. First null hypothesis H0: b0 = 0; alternative hypothesis Ha: b0 

≠ 0; second null hypothesis H0: b1 = 1; b1 ≠ 1. 

2. Select the significance level. We choose a significance level of 0.05. 

3. Determine the critical t value. The t-statistic at 0.05 significance level and 78 degrees of 

freedom is 1.99. 

4. For the first null hypothesis, see if the hypothesized value of b0 = 0 falls within a 95 

percent confidence interval. The confidence interval is from   ̂       ̂to  ̂       ̂. The 

estimated value of b0 is - 0.0140. 95 percent confidence interval = - 0.0140 - 1.99 

(0.3657) to - 0.0140 + 1.99 (0.3657) = - 0.7417 to 0.7137. Since b0 = 0 falls within this 

confidence interval, we cannot reject the null hypothesis that b0 = 0. 
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5. For the second null hypothesis, see if the hypothesized value of b1 = 1 falls within a 95 

percent confidence interval. The confidence interval is from   ̂       ̂to  ̂       ̂. The 

estimated value of b1 is 0.9637. 95 percent confidence interval = 0.9637 - 1.99 (0.1071) 

to + 1.99 (0.3657) = 0.7506 to 1.1768. Since b1 = 1 falls within this confidence interval, 

we cannot reject the null hypothesis that b1 = 1. 

6. Conclusion: We cannot reject the null hypotheses that the forecasts of CPI change were 

unbiased. 

LO.g: Formulate a null and alternative hypothesis about a population value of a regression 

coefficient, and determine the appropriate test statistic and whether the null hypothesis is 

rejected at a level of significance. 

 

3.6. Analysis of Variance in a Regression with One Independent Variable 

Analysis of variance or ANOVA is a statistical procedure of dividing the total variability of a 

variable into components that can be attributed to different sources. We use ANOVA to 

determine the usefulness of the independent variable or variables in explaining variation in the 

dependent variable. In simple terms, ANOVA explains the variation in the dependent variable 

for different levels of the independent variables. 

For a meaningful regression model the slope coefficients should be non-zero. This is determined 

through the F-test which is based on the F-statistic. The F-statistic tests whether all the slope 

coefficients in a linear regression are equal to 0. In a regression with one independent variable, 

this is a test of the null hypothesis H0: b1 = 0 against the alternative hypothesis Ha: b1 ≠ 0. The F-

statistic also measures how well the regression equation explains the variation in the dependent 

variable. The four values required to construct the F-statistic for null hypothesis testing are: 

 The total number of observations (n) 

 The total number of parameters to be estimated (self-assessment: how many parameters 

are estimated in a one-independent variable regression?) 

 The sum of squared errors or residuals (SSE): ∑  (     ̂)
    

     . This is also known as 

residual sum of squares. 
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 The regression sum of squares (RSS), ∑  (  ̂   ̅
 
     )  . This is the amount of total 

variation in Y that is explained in the regression equation. TSS = SSE + RSS 

The F-statistic is the ratio of the average regression sum of squares to the average sum of the 

squared errors. Average regression sum of squares (RSS) is the amount of variation in Y 

explained by the regression equation. 

F =  

   

 
   

   

 = 
                              

                  
 

where 

Mean regression sum of squares = 
                         

                                    
 

Mean squared error = 
                     

                         –                                     
 

Interpretation and application of F-test statistic: 

 The higher the F-statistic, the better it is as the regression model does a good job of 

explaining the variation in the dependent variable. 

 The F-statistic is 0 if the independent variable explains no variation in the dependent 

variable. 

 The F-statistic is used to evaluate whether a fund has generated positive alpha. The null 

hypothesis for this test will be: H0: α = 0 versus Ha: α ≠ 0. 

 F-statistic is usually not used in a regression with one independent variable because the 

F-statistic is the square of the t-statistic for the slope coefficient. 

Example 17: Performance evaluation: The Dreyfus Appreciation Fund 

This example illustrates how the F-test reveals nothing more than what the t-test already does. 

The ANOVA table and results of regression to evaluate the performance of the Dreyfus 

appreciation fund is given below: 

Regression Statistics       

Multiple R 0.928     
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R-squared 0.8611     

Standard error of estimate 0.0174     

Observations 60     

ANOVA 
Degrees of  Freedom 

(df) 

Mean Sum of 

Squares    (MSS) 
F 

Regression 1 0.1093 359.64 

Residual 58 0.0003 

 Total 59 

   

  Coefficients Standard Error t-Statistic 

Alpha 0.0009 0.0023 0.4036 

Beta 0.7902 0.0417 18.9655 

Source: Center for Research in Security Prices, University of Chicago.  

Note: From an exam perspective, be familiar with how to read the values from a table like this 

and understand what values matter in coming to a conclusion. 

Test the null hypothesis that α = 0, i.e. the fund did not have a significant excess return beyond 

the return associated with the market risk of the fund.  

Solution: 

Recall that the software tests the null hypothesis for slope coefficient = 0, so we can use the 

given t-statistic. Since the t-statistic of 18.9655 is high, the probability that the coefficient is 0 is 

very small. 

We get the same result using the F-statistic as well.  

F = 

      

 
      

    

       . The p-value for F-statistic is less than 0.0001. This is much lower than the 

significance level.  

LO.j: describe the use of analysis of variance (ANOVA) in regression analysis; interpret 

ANOVA results, calculate and interpret the F-statistic;  

 

3.7. Prediction Intervals 
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We use regression intervals to make predictions about a dependent variable. Earlier we discussed 

the construction of a confidence interval, which is a range of values that is likely to contain the 

value of an unknown population parameter. With a 95 percent confidence interval, are we 95 

percent confident that, say β, will have a value of 1? 

Prediction intervals focus on the accuracy. It represents an interval of values associated with a 

parameter that we believe includes the true parameter value, b1, with a specified probability.  

Let us consider the regression equation: Y = b0 + b1X.  The predicted value of   ̂      ̂    ̂ .  

The two sources of uncertainty in regression analysis using the estimated parameters to make a 

prediction are:  

1. The error term 

2. Uncertainty in predicting the estimated parameters b0 and b1 

The estimated variance of the prediction error is given by: 

  
     *  

 

 
 
(   ̅) 

(   )  
 
+ 

Note: You need not memorize this formula, but understand the factors that affect sf
2
, like higher 

the n, lower the variance, and the better it is. 

The estimated variance depends on: 

 the squared standard error of estimate, s
2
 

 the number of observations, n 

 the value of the independent variable, X 

 the estimated mean  ̅ 

 variance, s
2
, of the independent variable 

Once the variance of the prediction error is known, it is easy to determine the confidence interval 

around the prediction. The steps are: 

1. Make the prediction. 
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2. Compute the variance of the prediction error. 

3. Determine tc at the chosen significance level α. 

4. Compute the (1-α) prediction interval using the formula below: 

 ̂         

This part is not covered in the curriculum. But, it may help in understanding how a prediction 

interval is different from a confidence interval, as both are essentially a range of values: 

 It is wider than the confidence interval.  

 The interval accounts for movements in y, away from its mean value, in the future. 

 Any random future value of y. 

Example 18: Predicting the ratio of enterprise value to invested capital 

Given the results of a regression analysis below, predict the ratio of enterprise value to invested 

capital for the company at a 95 percent confidence interval. The return spread between ROIC and 

WACC is given as 10 percentage points. 

Regression Statistics       

Multiple R 0.9469     

R-squared 0.8966     

Standard error of estimate 0.7422     

Observations 9     

  
Coefficients 

Standard 

Error 
t-Statistic 

Intercept 1.3478 0.3511 3.8391 

Spread 30.0169 3.8519 7.7928 

Source: Nelson (2003).  

Solution: 

1. Expected EV/IC = b0 + b1 (ROIC-WACC) + ε 

Plugging in values from the table, we have: 

Expected EV/IC = 1.3478 + 30.0169 (0.1) = 4.3495 

This means that if the return spread is 10 percent, then the EV/IC ratio will be 4.3495. 
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2. Compute the variance of the prediction error using equation 7. 

  
     *  

 

 
 
(   ̅) 

(   )  
 
+          *  

 

 
 
(          ) 

(   )        
+

          

Sf = 0.7941 

3. tc at the 95 percent confidence level and 7 degrees of freedom is 2.365. 

4. 95 percent prediction interval using equation 8 is: 

4.3495 – 2.365 (0.7941) to 4.3495 + 2.365 (0.7941) = 2.4715 to 6.2275. 

LO.i: Calculate the predicted value for the dependent variable, given an estimated regression 

model and a value for the independent variable. 

 

LO.j: Calculate and interpret a confidence interval for the predicted value of the dependent 

variable. 

 

3.8. Limitations of Regression Analysis 

Following are the limitations of regression analysis: 

 Regression relations can change over time as do correlations. This is called parameter 

instability. This characteristic is observed in both cross-series and time-series regression 

relationships. 

 Regression analysis is often difficult to apply because of specification issues and 

assumption violations.  

o Specification issues: Identifying the independent variables and the dependent 

variable, and formulating the regression equation may be challenging. 

o Assumptions violations: Often there is an uncertainty in determining if an 

assumption has been violated.  

 Public knowledge of regression relationships may limit their usefulness in the future. For 

example, is low P/E stocks in the sugar industry have had historically high returns during 

Oct-Jan every year, then this knowledge may cause other analysts to buy the stock which 
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will push their prices up. 

LO.k: Describe the limitations of the regression analysis. 

 

4. Summary 

Below is a summary of the important points discussed in this reading: 

 Correlation analysis is used to measure the strength of the relationship between two 

variables. If there are two population data sets A and B, a sample is drawn from each one 

of them and we attempt to find a correlation between the samples.  

 The sample correlation is denoted by r, and the population correlation by ρ. The 

correlation coefficient has no units. It can take a value between -1 and 1.  

 The sample covariance is Cov (X,Y) = 
∑ (      ̅)(      ̅)
 
     

     
 

 The sample correlation coefficient of two variables X and Y is  
   (   )

     
 

 Significance tests through hypothesis testing allow us to assess whether apparent 

relationships between random variables are the result of chance. The null hypothesis is H0 

= 0 and alternate hypothesis is Ha  ≠ 0. 

 A t-test is used to determine whether the correlation between two variables is significant. 

As long as the two variables are distributed normally, we can test to determine whether 

the null hypothesis should be rejected using the sample correlation, r. The formula for the 

t-test is: 

  
 √   

    
 

 How to use the t-test: calculate the t-statistic, and compare it with tc. If absolute value of t 

> tc, then reject H0. If you reject H0, then there is a significant linear correlation. 

 Linear regression allows us to use one variable to make predictions about another, test 

hypotheses about the relation between two variables, and quantify the strength of the 

relationship between the two variables. Linear regression assumes a linear relationship 
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between the dependent and the independent variables. 

 A simple linear regression using one independent variable can be expressed as: 

              where i = 1,2,…n 

 The regression model chooses the estimated values for   ̂ and   ̂ such that this term  

∑ (      ̂     ̂  )
  

      is minimized. 

 The variable used to explain the dependent variable is the independent variable, X. The 

variable being explained is the dependent variable, Y. 

 Standard error of estimate:     (∑
(       ̂     ̂  )

 

   

 
     )

 

 

 =  

(
∑ (  )̂

  
     

   
)

 

 

 

 Coefficient of determination  

   
                   

               
 
                                     

               

   
                     

               
 

 The higher the R
2
, the more useful the model.     has a value between 0 and 1. 

 Correlation coefficient, r, is also called multiple-R. 

 A confidence interval is an interval of values that we believe includes the true parameter 

value, b1, with a given degree of confidence. 

 The confidence interval is given by   ̂       ̂  to    ̂       ̂ where tc is the critical t 

value for a given level of significance and degrees of freedom and   ̂ is the estimated 

slope coefficient. If the hypothesized value is outside the confidence interval, then reject 

the null hypothesis. 

 Alternatively, compare t-statistic = t =
  ̂     

   ̂

with tc; if t > tc, then reject the null 

hypothesis. 

 The p-value is the smallest level of significance at which the null hypothesis can be 

rejected. Higher the t-statistic, smaller the p-value and the stronger the evidence to reject 

the null hypothesis. 
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 Analysis of variance is a statistical procedure for dividing the variability of a variable into 

components that can be attributed to different sources. We use ANOVA to determine the 

usefulness of the independent variable or variables in explaining variation in the 

dependent variable. 

 The F-statistic measures how well the regression equation explains the variation in the 

dependent variable.  

 F =  

   

 
   

   

 = 
                              

                  
 

where 

Mean regression sum of squares = 
                         

                                    
 

Mean squared error = 
                     

                         –                                     
 

 The prediction interval is given by:  ̂         

 The limitation of regression analysis is that relationships can change over time. 

 

 


