

Texas Instruments BA II Plus Tutorial

Presented by Arif Irfanullah, CFA

www.ift.world

Part 1 Contents

- 1. Setup: floating decimal, payments per year
- 2. Future value of single payment (annual compounding)
- 3. Future value of single payment (quarterly compounding)
- 4. Future value of single payment (continuous compounding)
- 5. Present value of single payment (annual compounding)
- 6. Present value of single payment (continuous compounding)
- 7. Compute I/Y given PV, FV and N
- 8. Nominal and effective rates

Setup

Key Strokes	Explanation	Display
[2nd] [FORMAT]	Get into format mode	DEC = 2
9 [ENTER]	Set to floating decimal	DEC = 9
[2nd] [QUIT]	Return to standard calculator mode	0

Key Strokes	Explanation	Display
[2nd] [P/Y]	Set payments per year	12.00
1 [ENTER]	Set to 1 payment per year	1.00
[2nd] [QUIT]	Return to standard calculator mode	0

Future Value of Single Payment (Annual Compounding)

Invest \$100 today at 10% compounded annually. How much will this become after 5 years?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
5 [N]	Five years/periods	N = 5
10 [I/Y]	Set interest rate	I/Y = 10
100 [PV]	Set present value	PV = 100
0 [PMT]	Set payment	PMT = 0
[CPT] [FV]	Compute future value	-161.051

Future Value of Single Payment (Quarterly Compounding)

Invest \$100 today at 10% compounded quarterly. How much will this become after 5 years?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
20 [N]	Five years/periods	N = 20
2.5 [I/Y]	Set interest rate	I/Y = 2.5
100 [PV]	Set present value	PV = 100
0 [PMT]	Set payment	PMT = 0
[CPT] [FV]	Compute future value	-163.861

Future Value of Single Payment (Continuous Compounding)

Invest \$100 today at 10% compounded continuously. How much will this become after 5 years?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
0.5 [2nd] [e ^x]	Compute e ^{rT}	1.6487
X 100		164.87

Present Value of Single Payment (Annual Compounding)

You will get \$161.05 in 5 years. Interest rate is 10%. What is the present value?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
5 [N]	Five years/periods	N = 5
10 [I/Y]	Set interest rate	I/Y = 10
0 [PMT]	Set payment	PMT = 0
161.05 [FV]	Set future value	FV = 161.05
[CPT] [PV]	Compute present value	-99.999

Present Value of Single Payment (Continuous Compounding)

You will get 164.87 after 5 years. How much is this worth today. Assume continuous compounding with a stated rate of 10%?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
0.5 [+/-] [2nd] [e ^x]	Compute e -rT	0.60653
X 164.87		99.9987

Compute I/Y Given PV, FV and N

Invest \$100 today and get 161.05 in 5 years. What is the interest rate?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
5 [N]	Five years/periods	N = 5
100 [PV]	Set present value	PV = 100
0 [PMT]	Set payment	PMT = 0
161.05[+/-] [FV]	Set future value	FV = -161.05
[CPT] [I/Y]	Compute interest rate	I/Y = 10

Nominal and Effective Rates

Calculate EAR for: 12% with quarterly compounding 12% with continuous compounding

Key Strokes	Explanation	Display
[2nd] [ICONV]	Enter interest rate conversion mode	NOM = 0
[2nd] [CLR WRK]	Clear previously stored values	NOM = 0
[12] [ENTER]	Enter nominal rate = 12	NOM = 12
[个] [4] [ENTER]	Enter compounding frequency = 4	C/Y = 4
[个] [CPT]	Compute effective rate	EFF = 12.55

Tip: For continuous compounding enter a high value for C/Y, for example C/Y = 10,000

Part 2 Contents

- 1. Future value of ordinary annuity
- 2. Future value of annuity due
- 3. Present value of ordinary annuity
- 4. Present value of annuity due
- 5. Compute PMT given PV, I/Y and FV
- 6. Present value given I/Y, PMT and FV
- 7. NPV for uneven cash flow
- 8. IRR for uneven cash flow

Future Value of Ordinary Annuity

You plan to invest \$100 at the end of every year for the next three years. What is the future value at the end of 3 years assuming an interest rate of 10%?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
3 [N]	Five years/periods	N = 3
10 [I/Y]	Set interest rate	I/Y = 10
0 [PV]	Set present value	PV = 0
100 [PMT]	Set payment	PMT = 100
[CPT] [FV]	Compute future value	-331

Future Value of Annuity Due

You invest \$100 now, \$100 at the end of year 1 and \$100 at the end of year 2. The interest rate is 10%. What is the future value at the end of 3 years?

Key Strokes	Explanation	Display
[2nd] [BGN] [2nd] [SET]	Puts in BGN mode	0
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clears TVM Worksheet	0
3 [N]	Five years/periods	N = 3
10 [I/Y]	Set interest rate	I/Y = 10
0 [PV]	Set present value	PV = 0
100 [PMT]	Set payment	PMT = 100
[CPT] [FV]	Compute future value	-364.1

Tip: Switch back to END mode.

Present Value of Ordinary Annuity

You will get \$100 at the end of every year for 3 years. What is the present value assuming an interest rate of 10%?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
3 [N]	Five years/periods	N = 3
10 [I/Y]	Set interest rate	I/Y = 10
0 [FV]	Set future value	FV = 0
100 [PMT]	Set payment	PMT = 100
[CPT] [PV]	Compute present value	-248.685

Present Value of Annuity Due

You get \$100 now and then again at the end of year 1 and year 2. What is the present value assuming an interest rate of 10%?

Key Strokes	Explanation	Display
[2nd] [BGN] [2nd] [SET]	Put calculator in BGN mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
3 [N]	Five years/periods	N = 3
10 [I/Y]	Set interest rate	I/Y = 10
0 [FV]	Set future value	FV = 0
100 [PMT]	Set payment	PMT = 100
[CPT] [PV]	Compute present value	-273.55

Compute Payments Given PV, I/Y and FV

You borrow \$100,000 at 6% and need to make monthly payments over thirty years. What is your monthly payment amount?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
30 x 12 = [N]	Five years/periods	N = 360
6 ÷ 12 = [I/Y]	Set interest rate	I/Y = 0.5
100,000 [PV]	Set present value	PV = 100,000
0 [FV]	Set future value	FV = 0
[CPT] [PMT]	Compute monthly payments	-599.55

Present Value Given Payments and Future Value

You will receive \$100 at the end of every year for five years. In addition you will get \$1,000 at the end five years. The interest rate is 8%. What is the present value?

Key Strokes	Explanation	Display
[2nd] [QUIT]	Return to standard calculator mode	0
[2nd] [CLR TVM]	Clear TVM Worksheet	0
5 [N]	Set number of periods	N = 5
8 [I/Y]	Set interest rate per period	I/Y = 8
100 [PMT]	Set payment	PMT = 100
1000 [FV]	Set future value	FV = 1000
[CPT] [PV]	Compute present value	-1079.85

NPV for Uneven Cash flow

Year	0	1	2	3	4
Cash flow	-100	-50	100	0	200

Key Strokes	Explanation	Display
[CF] [2nd] [CLR WRK]	Clear CF Register	CF0 = 0
100 [+/-] [ENTER]	Initial Outlay	CF0 = -100
[↓] 50 [+/-] [ENTER]	Period 1 CF	C01 = -50
$[\downarrow][\downarrow]$ 100 [ENTER]	Period 2 CF	C02 = 100
$[\downarrow][\downarrow]$ 0 [ENTER]	Period 3 CF	C03 = 0
[↓][↓] 200 [ENTER]	Period 4 CF	C04 = 200
[↓] [NPV] 10 [ENTER]	Set Interest Rate	I = 10
[↓] [CPT]	Compute NPV	NPV = 73.79

IRR for Uneven Cash flow

Year	0	1	2	3	4
Cash flow	-100	-50	90	90	90

Key Strokes	Explanation	Display
[CF] [2nd] [CLR WRK]	Clear CF Register	CF0 = 0
100 [+/-] [ENTER]	Initial Outlay	CF0 = -100
[↓] 50 [+/-] [ENTER]	Period 1 CF	C01 = -50
[↓] [↓] 90 [ENTER]	Period 2 CF	C02 = 90
[↓] 3 [ENTER]	Frequency	F02 = 3
[↓] [IRR] [CPT]	Compute IRR	IRR = 25.189

Part 3 Contents

- 1. Standard deviation of a population and sample
- 2. Expected value and standard deviation of a random variable
- 3. Factorial, permutations and combinations
- 4. STO, RCL
- 5. Backspace
- 6. Exponent (Y^x)

Standard Deviation for Population and Sample

15	-5	12	22
----	----	----	----

Key Strokes	Explanation	Display
[2nd] [DATA]	Enter data mode	X01
[2nd] [CRL WORK]	Clear data registers	X01
15 [ENTER]	Enter 1 st value	X01 = 15
[↓][↓] 5 [+/-] [ENTER]	Enter 2 nd value	X02 = -5
$[\downarrow][\downarrow]$ 12 [ENTER]	Enter 3 rd value	X03 = 12
$[\downarrow][\downarrow]$ 22 [ENTER]	Enter 4 th value	X04 = 22
[↓] [2nd] [STAT]	Puts calculator into stats mode.	
[2nd] [SET] repeatedly	Press repeatedly till you see $ ightarrow$	1-V
[↓]	Number of data points	n = 4
[↓]	Mean	X = 11
[↓]	Sample standard deviation	Sx = 11.46
[↓]	Population standard deviation	σx = 9.92

Expected Value & Standard Deviation of a Random Variable

State of Economy	Probability	EPS
Good	0.4	\$9
Average	0.5	\$6
Weak	0.1	\$1

Keystrokes	Explanation	Display
[2nd] [DATA]	Enter data entry mode	
[2nd] [CLR WRK]	Clear data registers	X01
9 [ENTER]	1 st possible value of random variable	X01 = 9
[↓] 40 [ENTER]	Probability of 40% for X01	Y01 = 40
[↓] 6 [ENTER]	2 nd possible value of random variable	X02 = 6
[↓] 50 [ENTER]	Probability of 50% for X02	Y02 = 50
[↓] 1 [ENTER]	3 rd possible value of random variable	X03 = 1
[↓] 10 [ENTER]	Probability of 10% for X03	Y03 = 10
[2nd] [STAT]	Puts calculator into stats mode.	
[2nd] [SET]	Press repeatedly till you see $ ightarrow$	1-V
[↓]	Total number of entries	N = 100
[↓]	Expected value of random variable	X = 6.7
[↓]	Sample standard deviation	Sx = 2.38
[↓]	Population standard deviation	σx = 2.37

www.ift.world

Factorial, Permutations and Combinations

Factorial Example: Keystrokes for 4!: **4 2ND x!**

Permutations

Example: Keystrokes for 6P2: 6 2ND nPr 2 =

Combinations

Example: Keystrokes for 6C2: 6 2ND nCr 2 =

STO, RCL, Backspace and Exponent

Store and recall

Backspace

Exponent Example: 1.04³ Keystrokes: **1.04** Y^x **3** =

Thank you!

